Fluorination, and tunneling across molecular junctions.
نویسندگان
چکیده
This paper describes the influence of the substitution of fluorine for hydrogen on the rate of charge transport by hole tunneling through junctions of the form Ag(TS)O2C(CH2)n(CF2)(m)T//Ga2O3/EGaIn, where T is methyl (CH3) or trifluoromethyl (CF3). Alkanoate-based self-assembled monolayers (SAMs) having perfluorinated groups (R(F)) show current densities that are lower (by factors of 20-30) than those of the homologous hydrocarbons (R(H)), while the attenuation factors of the simplified Simmons equation for methylene (β = (1.05 ± 0.02)n(CH2)(-1)) and difluoromethylene (β = (1.15 ± 0.02)n(CF2)(-1)) are similar (although the value for (CF2)n is statistically significantly larger). A comparative study focusing on the terminal fluorine substituents in SAMs of ω-tolyl- and -phenyl-alkanoates suggests that the C-F//Ga2O3 interface is responsible for the lower tunneling currents for CF3. The decrease in the rate of charge transport in SAMs with R(F) groups (relative to homologous R(H) groups) is plausibly due to an increase in the height of the tunneling barrier at the T//Ga2O3 interface, and/or to weak van der Waals interactions at that interface.
منابع مشابه
Vibronic coupling in semifluorinated alkanethiol junctions: implications for selection rules in inelastic electron tunneling spectroscopy.
Determining the selection rules for the interaction of tunneling charge carriers with molecular vibrational modes is important for a complete understanding of charge transport in molecular electronic junctions. Here, we report the low-temperature charge transport characteristics for junctions formed from hexadecanethiol molecules having varying degrees of fluorination. Our results demonstrate t...
متن کاملRoom Temperature Hydrogen Sensor Based on Single-Electron Tunneling Between Palladium Nanoparticles
In this paper, we present the results of single-electron tunneling in two-dimensional (2D) hexagonal closed packed arrays of palladium nanoparticles. After inspecting the emergence of Coulomb blockade phenomena, we demonstrate the possibilities of using these arrays as a single-electron tunneling based hydrogen sensor. We assumed arrays of palladium nanoparticles with diameters of 3.5 and 6...
متن کاملThe rate of charge tunneling through self-assembled monolayers is insensitive to many functional group substitutions.
At its conception, the field of molecular electronics promised to provide the ability to engineer the rate of charge transport through the design of the molecular structure of electronic junctions. The hypothesis was that the electronic and geometrical structure of molecules in a junction would have a significant and predictable effect on the rate and mechanism of charge transport through their...
متن کاملUncovering a law of corresponding states for electron tunneling in molecular junctions.
Laws of corresponding states known so far demonstrate that certain macroscopic systems can be described in a universal manner in terms of reduced quantities, which eliminate specific substance properties. To quantitatively describe real systems, all these laws of corresponding states contain numerical factors adjusted empirically. Here, we report a law of corresponding states deduced analytical...
متن کاملThermoelectric Properties of Single Molecule Junctions
Probing Electronic and Thermoelectric Properties of Single Molecule Junctions Jonathan R. Widawsky In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 137 11 شماره
صفحات -
تاریخ انتشار 2015